x+x^2=x+2+4

Simple and best practice solution for x+x^2=x+2+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+x^2=x+2+4 equation:



x+x^2=x+2+4
We move all terms to the left:
x+x^2-(x+2+4)=0
We add all the numbers together, and all the variables
x^2+x-(x+6)=0
We get rid of parentheses
x^2+x-x-6=0
We add all the numbers together, and all the variables
x^2-6=0
a = 1; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·1·(-6)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*1}=\frac{0-2\sqrt{6}}{2} =-\frac{2\sqrt{6}}{2} =-\sqrt{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*1}=\frac{0+2\sqrt{6}}{2} =\frac{2\sqrt{6}}{2} =\sqrt{6} $

See similar equations:

| 20^3t=10 | | -4(x+7)=6(x-2) | | -3(4x-8=)-36 | | 5z=7=-3 | | 1/4(8x+12)=3 | | 3(z-1/7)=-4z | | x+2x=+4 | | 5.49x=40 | | 9(x+2)=8(2x-5) | | 1/7=-8(1/9)+k | | -9x-49=5(x+9) | | (5x+10)¹/²=-4x+17 | | 50h=190-40 | | -2x+2/3=2x+4/5-4x | | x+x+1=x^2+4 | | -3/7=-5/21+m | | 5=7(3u-u)+u+2u | | dd+261.9=-48 | | 18-20=2q-2q | | 4/9z-1/4=-5/9z-1/2 | | 5x-19+4x-8=180 | | 5x+15-3x=5-2(x+2)+4x | | 24-(4p+8)=56 | | (5x+10)^(1/2)=-4x+17 | | -5=2-x+4 | | -12=-2c | | 2x+4+3×-1=7×-2-× | | -9x-49=-5(x+9) | | (6x-15)+(x^2+8)=153 | | -5x-9=23+3x | | 3=a/7−8 | | 3=a7−8 |

Equations solver categories